Login / Signup

Atomically Flat Zigzag Edges in Monolayer MoS2 by Thermal Annealing.

Qu ChenHuashan LiWenshuo XuShanShan WangHidetaka SawadaChristopher S AllenAngus I KirklandJeffrey C GrossmanJamie H Warner
Published in: Nano letters (2017)
The edges of 2D materials show novel electronic, magnetic, and optical properties, especially when reduced to nanoribbon widths. Therefore, methods to create atomically flat edges in 2D materials are essential for future exploitation. Atomically flat edges in 2D materials are found after brittle fracture or when electrically biasing, but a simple scalable approach for creating atomically flat periodic edges in monolayer 2D transition metal dichalcogenides has yet to be realized. Here, we show how heating monolayer MoS2 to 800 °C in vacuum produces atomically flat Mo terminated zigzag edges in nanoribbons. We study this at the atomic level using an ultrastable in situ heating holder in an aberration-corrected transmission electron microscope and discriminating Mo from S at the edge, revealing unique Mo terminations for all zigzag orientations that remain stable and atomically flat when cooling back to room temperature. Highly faceted MoS2 nanoribbon constrictions are produced with Mo rich edge structures that have theoretically predicted spin separated transport channels, which are promising for spin logic applications.
Keyphrases
  • room temperature
  • transition metal
  • ionic liquid
  • quantum dots
  • high resolution
  • gold nanoparticles
  • reduced graphene oxide
  • single molecule
  • density functional theory
  • electron microscopy