Adsorption of Amyloidogenic Peptides to Functionalized Surfaces Is Biased by Charge and Hydrophilicity.
Torsten JohnGeorge W GreeneNitin A PatilTiara J A DealeyMohammed A HossainBernd AbelLisandra L MartinPublished in: Langmuir : the ACS journal of surfaces and colloids (2019)
Surfaces are abundant in living systems, such as in the form of cellular membranes, and govern many biological processes. In this study, the adsorption of the amyloidogenic model peptides GNNQQNY, NNFGAIL, and VQIVYK as well as the amyloid-forming antimicrobial peptide uperin 3.5 (U3.5) were studied at low concentrations (100 μM) to different surfaces. The technique of a quartz crystal microbalance with dissipation monitoring (QCM-D) was applied as it enables the monitoring of mass binding to sensors at nanogram sensitivity. Gold-coated quartz sensors were used as unmodified gold surfaces or functionalized with self-assembled monolayers (SAMs) of alkanethiols (terminated as methyl, amino, carboxyl, and hydroxyl) resulting in different adsorption affinities of the peptides. Our objective was to evaluate the underlying role of the nature and feature of interfaces in biological systems which could concentrate peptides and impact or trigger peptide aggregation processes. In overall, the largely hydrophobic peptides adsorbed with preference to hydrophobic or countercharged surfaces. Further, the glycoprotein lubricin (LUB) was tested as an antiadhesive coating. Despite its hydrophilicity, the adsorption of peptides to LUB coated sensors was similar to the adsorption to unmodified gold surfaces, which indicates that some peptides diffused through the LUB layer to reach the underlying gold sensor surface. The LUB protein-antiadhesive is thus more effective as a biomaterial coating against larger biomolecules than small peptides under the conditions used here. This study provides directions toward a better understanding of amyloid peptide adsorption to biologically relevant interfaces, such as cellular membranes.