Login / Signup

Under-cover stabilization and reactivity of a dense carbon monoxide layer on Pt(111).

Igor PíšElena MagnanoSilvia NappiniFederica Bondino
Published in: Chemical science (2018)
The space between a metal surface and a two-dimensional cover can be regarded as a nanoreactor, where confined molecule adsorption and surface reactions may occur. In this work, we report CO intercalation and reactivity between a graphene-hexagonal boron nitride (h-BNG) heterostructure and Pt(111). By employing high resolution X-ray photoemission spectroscopy (XPS) we demonstrate the molecular intercalation of the full h-BNG overlayer and stabilization of a dense R23.4°-13CO layer on Pt(111) under ultra-high vacuum at room temperature. We provide experimental evidence of a weakened CO-metal bond due to the confinement effects of the 2D cover. Temperature-programmed XPS results reveal that CO desorption is kinetically delayed and occurs at a higher temperature than on bare Pt(111). Moreover, CO partially reacts with the h-BNG layer to form boron-oxide species, which affect repeated CO intercalation. Finally, we found that the properties of the system towards interaction with CO can be considerably recovered using high temperature treatment.
Keyphrases