Login / Signup

Two-Dimensional MnO2 Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H2O2 and Color.

Jiahui WuQiaoting YangQian LiHaiyin LiFeng Li
Published in: Analytical chemistry (2021)
Traditional peroxidase-like nanozyme-based sensors suffer from self-decomposition and high toxicity of H2O2, as well as the interference of color from nanozymes themselves and testing samples. In this work, we adopt nanozymes (two-dimension (2D) MnO2 sheets, manganese dioxide nanosheets (MnNS)) with oxidase-like and peroxidase-like properties as advanced catalysts to develop a novel homogeneous electrochemical sensor for organophosphate pesticides (OPs) using dissolved O2 as a coreactant without the interference of H2O2 and color. Owing to the large surface area and unique catalytic activity of MnNS, a large amount of tetramethylbenzidine (TMB) is catalyzed oxidation, leading to a significantly declined differential pulse voltammetry (DPV) current. Obviously, MnNS display an excellent response to thiocholine, deriving from the catalyzing hydrolysis of acetylthiocholine (ATCh) by acetylcholinesterase (AChE), which switches a homogeneous electrochemical OP detection process based on the depressing AChE activity with a limit of detection (LOD) of 0.025 ng mL-1. The as-proposed strategy on using nanozymes with oxidase-like and peroxidase-like properties to develop a homogeneous electrochemical sensor will provide a new pathway for improving the performance of nanozyme-based sensors, and the established MnNS-based homogeneous electrochemical sensor will find more applications for OP residue determination in food samples.
Keyphrases