Unravelling the novel genetic diversity and marker-trait associations of corn leaf aphid resistance in wheat using microsatellite markers.
Jayant YadavPoonam JasrotiaMaha Singh JaglanSindhu SareenPrem Lal KashyapSudheer KumarSurender Singh YadavGyanendra SinghGyanendra Pratap SinghPublished in: PloS one (2024)
The study was conducted to identify novel simple sequence repeat (SSR) markers associated with resistance to corn aphid (CLA), Rhopalosiphum maidis L. in 48 selected bread wheat (Triticum aestivum L.) and wild wheat (Aegilops spp. & T. dicoccoides) genotypes during two consecutive cropping seasons (2018-19 and 2019-20). A total of 51 polymorphic markers containing 143 alleles were used for the analysis. The frequency of the major allele ranged from 0.552 (Xgwm113) to 0.938 (Xcfd45, Xgwm194 and Xgwm526), with a mean of 0.731. Gene diversity ranged from 0.116 (Xgwm526) to 0.489 (Xgwm113), with a mean of 0.354. The polymorphic information content (PIC) value for the SSR markers ranged from 0.107 (Xgwm526) to 0.370 (Xgwm113) with a mean of 0.282. The results of the STRUCTURE analysis revealed the presence of four main subgroups in the populations. Analysis of molecular variance (AMOVA) showed that the between-group difference was around 37 per cent of the total variation contributed to the diversity by the whole germplasm, while 63 per cent of the variation was attributed between individuals within the group. A general linear model (GLM) was used to identify marker-trait associations, which detected a total of 23 and 27 significant new marker-trait associations (MTAs) at the p < 0.01 significance level during the 2018-19 and 2019-20 crop seasons, respectively. The findings of this study have important implications for the identification of molecular markers associated with CLA resistance. These markers can increase the accuracy and efficiency of aphid-resistant germplasm selection, ultimately facilitating the transfer of resistance traits to desirable wheat genotypes.