Login / Signup

Combined roles of exporters in acetic acid tolerance in Saccharomyces cerevisiae.

Xiaohuan ZhangJeroen G NijlandArnold J M Driessen
Published in: Biotechnology for biofuels and bioproducts (2022)
Acetic acid is a growth inhibitor generated during alcoholic fermentation and pretreatment of lignocellulosic biomass, a major feedstock to produce bioethanol. An understanding of the acetic acid tolerance mechanisms is pivotal for the industrial production of bioethanol. One of the mechanisms for acetic acid tolerance is transporter-mediated secretion where individual transporters have been implicated. Here, we deleted the transporters Aqr1, Tpo2, and Tpo3, in various combinations, to investigate their combined role in acetic acid tolerance. Single transporter deletions did not impact the tolerance at mild acetic acid stress (20 mM), but at severe stress (50 mM) growth was decreased or impaired. Tpo2 plays a crucial role in acetic acid tolerance, while the AQR1 deletion has a least effect on growth and acetate efflux. Deletion of both Tpo2 and Tpo3 enhanced the severe growth defects at 20 mM acetic acid concomitantly with a reduced rate of acetate secretion, while TPO2 and/or TPO3 overexpression in ∆tpo2∆tpo3∆ restored the tolerance. In the deletion strains, the acetate derived from sugar metabolism accumulated intracellularly, while gene transcription analysis suggests that under these conditions, ethanol metabolism is activated while acetic acid production is reduced. The data demonstrate that Tpo2 and Tpo3 together fulfill an important role in acetate efflux and the acetic acid response.
Keyphrases
  • saccharomyces cerevisiae
  • escherichia coli
  • gene expression
  • machine learning
  • early onset
  • heavy metals
  • risk assessment
  • electronic health record
  • deep learning
  • anaerobic digestion