Login / Signup

Skeletal Development and Deformities in Tench (Tinca tinca): From Basic knowledge to Regular Monitoring Procedure.

Ignacio FernándezFrancisco Javier Toledo-SolísCristina Tomás-AlmenarAna M LarránPedro CárdabaLuis Miguel LagunaMaría Sanz GalánJosé Antonio Mateo
Published in: Animals : an open access journal from MDPI (2021)
Skeletal deformities reduce fish viability, growth, wellbeing, and feed efficiency but also degrade the consumer's perception of aquaculture products. Herein, the skeletal development and the incidence of skeletal deformities in tench (Tinca tinca) reared in semi-extensive conditions has been described in detail for the first time. Larval skeletons were assessed through an acid-free double-staining procedure in 157 individuals, while 274 specimens at the juvenile stage were evaluated through X-ray analysis. The first skeletal structures to be formed were those related with breathing and feeding activities (e.g., Meckel's cartilage and opercula) and were visible in larvae of 4 mm of standard length (SL). The axial skeleton was fully ossified in larvae of 12-17 mm of SL, and the caudal fin complex in larvae with 17-26 mm of SL. At the larval stage, no upper-jaw or opercula deformities were observed, while a low incidence (1-9%) of other severe deformities in the heads of the fish (e.g., lower-jaw deformities) were reported. The incidence of vertebral deformities in tench reared in natural ponds was considerable in larvae (54%) and juveniles (52%). Vertebral deformities (fusion and compression) were the most common deformities found in tench larvae (approximately 30%) and vertebral shape deformity in juveniles (around 10%), being mainly located in the caudal region. Thus, a regular monitoring of the skeletal deformities in tench might help to identify better rearing protocols and improve product quality sold at markets. Characterizing the skeletal development not only in semi-extensive systems such as artificial and natural ponds but also under intensive rearing conditions, seems vital for a sustainable and profitable European tench aquaculture.
Keyphrases
  • aedes aegypti
  • drosophila melanogaster
  • risk factors
  • healthcare
  • bone mineral density
  • computed tomography
  • minimally invasive
  • magnetic resonance
  • body composition
  • social media
  • early onset
  • health information