Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov.
Karen HarmsAndrea MilicAlberto Miguel StchigelMarc StadlerFrank SurupYasmina Marin-FelixPublished in: Journal of fungi (Basel, Switzerland) (2021)
Triangularia mangenotti was analyzed for the production of secondary metabolites, resulting in the isolation of known zopfinol (1) and its new derivatives zopfinol B-C (2-4), the 10-membered lactones 7-O-acetylmultiplolide A (5) and 8-O-acetylmultiplolide A (6), together with sordarin (7), sordarin B (8), and hypoxysordarin (9). The absolute configuration of 1 was elucidated by the synthesis of MPTA-esters. Compound 1 showed antimicrobial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus and the fungus Mucor hiemalis. While 4 was weakly antibacterial, 3 showed stronger antibiotic activity against the Gram-positive bacteria and weak antifungal activity against M. hiemalis and Rhodotorula glutinis. We furthermore observed the cytotoxicity of 1, 3 and 4 against the mammalian cell lines KB3.1 and L929. Moreover, the new genus Pseudorhypophila is introduced herein to accommodate Triangularia mangenotii together with several species of Zopfiella-Z. marina, Z. pilifera, and Z. submersa. These taxa formed a well-supported monophyletic clade in the recently introduced family Navicularisporaceae, located far from the type species of the respective original genera, in a phylogram based on the combined dataset sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and fragments of the ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Zopfiella submersa is synonymized with P. marina due to the phylogenetic and morphological similarity. The isolation of zopfinols 1-4 and sordarins 7-9 confirms the potential of this fungal order as producers of bioactive compounds and suggests these compounds as potential chemotaxonomic markers.