Microfluidic Technologies for cfDNA Isolation and Analysis.
Zheyun XuYi QiaoJing TuPublished in: Micromachines (2019)
Cell-free DNA (cfDNA), which promotes precision oncology, has received extensive concern because of its abilities to inform genomic mutations, tumor burden and drug resistance. The absolute quantification of cfDNA concentration has been proved as an independent prognostic biomarker of overall survival. However, the properties of low abundance and high fragmentation hinder the isolation and further analysis of cfDNA. Microfluidic technologies and lab-on-a-chip (LOC) devices provide an opportunity to deal with cfDNA sample at a micrometer scale, which reduces required sample volume and makes rapid isolation possible. Microfluidic platform also allow for high degree of automation and high-throughput screening without liquid transfer, where rapid and precise examination and quantification could be performed at the same time. Microfluidic technologies applied in cfDNA isolation and analysis are limited and remains to be further explored. This paper reviewed the existing and potential applications of microfluidic technologies in collection and enrichment of cfDNA, quantification, mutation detection and sequencing library construction, followed by discussion of future perspectives.