A learned embedding for efficient joint analysis of millions of mass spectra.
Wout BittremieuxDamon H MayJeffrey BilmesWilliam Stafford NoblePublished in: Nature methods (2022)
Computational methods that aim to exploit publicly available mass spectrometry repositories rely primarily on unsupervised clustering of spectra. Here we trained a deep neural network in a supervised fashion on the basis of previous assignments of peptides to spectra. The network, called 'GLEAMS', learns to embed spectra in a low-dimensional space in which spectra generated by the same peptide are close to one another. We applied GLEAMS for large-scale spectrum clustering, detecting groups of unidentified, proximal spectra representing the same peptide. We used these clusters to explore the dark proteome of repeatedly observed yet consistently unidentified mass spectra.