Login / Signup

The Capsicum baccatum-Specific Truncated NLR Protein CbCN Enhances the Innate Immunity against Colletotrichum acutatum.

Seung Min SonSoohong KimKyong Sil LeeJun OhInchan ChoiJae Wahng DoJae Bok YoonJungheon HanSang Ryeol Park
Published in: International journal of molecular sciences (2021)
Chili pepper (Capsicumannuum) is an important fruit and spice used globally, but its yield is seriously threatened by anthracnose. Capsicum baccatum is particularly valuable as it carries advantageous disease resistance genes. However, most of the genes remain to be identified. In this study, we identified the C. baccatum-specific gene CbCN, which encodes a truncated nucleotide-binding and leucine-rich repeat protein in the anthracnose resistant chili pepper variety PBC80. The transcription of CbCN was greater in PBC80 than it was in the susceptible variety An-S after Colletotrichum acutatum inoculation. In order to investigate the biological function of CbCN, we generated transgenic tobacco lines constitutively expressing CbCN. Notably, CbCN-overexpressing transgenic plants exhibited enhanced resistance to C. acutatum compared to wild-type plants. Moreover, the expression of pathogenesis-related (PR) genes was remarkably increased in a CbCN-overexpressing tobacco plants. In order to confirm these results in chili pepper, we silenced the CbCN gene using the virus-induced gene silencing system. The anthracnose resistance and expressions of PR1, PR2, and NPR1 were significantly reduced in CbCN-silenced chili peppers after C. acutatum inoculations. These results indicate that CbCN enhances the innate immunity against anthracnose caused by C. acutatum by regulating defense response genes.
Keyphrases