In the background of the rapid development of artificial intelligence, big data, IoT, 5G/6G, and other technologies, electrochemical sensors pose higher requirements for high-throughput detection. In this study, we developed a workstation with up to 10 channels, which supports both parallel signal stimulation and online electrochemical analysis functions. The platform was wired to a highly integrated Bluetooth chip used for wireless data transmission and can be visualized on a smartphone. We used this electrochemical test platform with carbon-graphene oxide/screen-printed carbon electrodes (CB-GO/SPCE) for the online analysis of L-tyrosine (Tyr), and the electrochemical performance and stability of the electrodes were examined by differential pulse voltammetry (DPV). The CB-GO-based screen-printed array electrodes with a multichannel electrochemical platform for Tyr detection showed a low detection limit (20 μM), good interference immunity, and 10-day stability in the range of 20-200 μM. This convenient electrochemical analytical device enables high-throughput detection and has good economic benefits that can contribute to the improvement of the accuracy of electrochemical analysis and the popularization of electrochemical detection methods in a wide range of fields.
Keyphrases
- label free
- high throughput
- gold nanoparticles
- big data
- artificial intelligence
- loop mediated isothermal amplification
- molecularly imprinted
- ionic liquid
- machine learning
- real time pcr
- single cell
- reduced graphene oxide
- social media
- blood pressure
- healthcare
- health information
- deep learning
- high resolution
- sensitive detection
- solid state
- quantum dots