Serum Metabolomics of Incident Diabetes and Glycemic Changes in a Population With High Diabetes Burden: The Hispanic Community Health Study/Study of Latinos.
Jin Choul ChaiGuo-Chong ChenBing YuJiaqian XingA Heather EliassenTasneem KhambatyKrista M PerreiraMarisa J PereraDenise C VidotSheila F CastanedaElizabeth SelvinCasey M RebholzMartha L DaviglusJianwen CaiLinda Van HornCarmen R IsasiFrank B HuMeredith HawkinsXiaonan XueEric BoerwinkleRobert C KaplanQibin QiPublished in: Diabetes (2022)
Metabolomic signatures of incident diabetes remain largely unclear for the U.S. Hispanic/Latino population, a group with high diabetes burden. We evaluated the associations of 624 known serum metabolites (measured by a global, untargeted approach) with incident diabetes in a subsample (n = 2,010) of the Hispanic Community Health Study/Study of Latinos without diabetes and cardiovascular disease at baseline (2008-2011). Based on the significant metabolites associated with incident diabetes, metabolite modules were detected using topological network analysis, and their associations with incident diabetes and longitudinal changes in cardiometabolic traits were further examined. There were 224 incident cases of diabetes after an average 6 years of follow-up. After adjustment for sociodemographic, behavioral, and clinical factors, 134 metabolites were associated with incident diabetes (false discovery rate-adjusted P < 0.05). We identified 10 metabolite modules, including modules comprising previously reported diabetes-related metabolites (e.g., sphingolipids, phospholipids, branched-chain and aromatic amino acids, glycine), and 2 reflecting potentially novel metabolite groups (e.g., threonate, N-methylproline, oxalate, and tartarate in a plant food metabolite module and androstenediol sulfates in an androgenic steroid metabolite module). The plant food metabolite module and its components were associated with higher diet quality (especially higher intakes of healthy plant-based foods), lower risk of diabetes, and favorable longitudinal changes in HOMA for insulin resistance. The androgenic steroid module and its component metabolites decreased with increasing age and were associated with a higher risk of diabetes and greater increases in 2-h glucose over time. We replicated the associations of both modules with incident diabetes in a U.S. cohort of non-Hispanic Black and White adults (n = 1,754). Among U.S. Hispanic/Latino adults, we identified metabolites across various biological pathways, including those reflecting androgenic steroids and plant-derived foods, associated with incident diabetes and changes in glycemic traits, highlighting the importance of hormones and dietary intake in the pathogenesis of diabetes.