Login / Signup

Self-Healing Nanophotonics: Robust and Soft Random Lasers.

Yun-Tzu HsuChia-Tse TaiHsing-Mei WuCheng-Fu HouYu-Ming LiaoWei-Cheng LiaoGolam HaiderYung-Chi HsiaoChi-Wei LeeShu-Wei ChangYing-Huan ChenMin-Hsuan WuRou-Jun ChouKrishna Prasad BeraYen-Yu LinYi-Zih ChenMonika KatariaShih-Yao LinChristy Roshini Paul InbarajWei-Ju LinWen-Ya LeeTai-Yuan LinYing-Chih LaiYang-Fang Chen
Published in: ACS nano (2019)
Self-healing technology promises a generation of innovation in cross-cutting subjects ranging from electronic skins, to wearable electronics, to point-of-care biomedical sensing modules. Recently, scientists have successfully pulled off significant advances in self-healing components including sensors, energy devices, transistors, and even integrated circuits. Lasers, one of the most important light sources, integrated with autonomous self-healability should be endowed with more functionalities and opportunities; however, the study of self-healing lasers is absent in all published reports. Here, the soft and self-healable random laser (SSRL) is presented. The SSRL can not only endure extreme external strain but also withstand several cutting/healing test cycles. Particularly, the damaged SSRL enables its functionality to be restored within just few minutes without the need of additional energy, chemical/electrical agents, or other healing stimuli, truly exhibiting a supple yet robust laser prototype. It is believed that SSRL can serve as a vital building block for next-generation laser technology as well as follow-on self-healing optoelectronics.
Keyphrases
  • high speed
  • blood pressure
  • mass spectrometry
  • heart rate
  • low cost