Login / Signup

Accelerated Intramolecular Charge Transfer in Tetracyanobutadiene- and Expanded Tetracyanobutadiene-Incorporated Asymmetric Triphenylamine-Quinoxaline Push-Pull Conjugates.

Youngwoo JangBijesh SekaranPrabal P SinghRajneesh MisraFrancis D'Souza
Published in: The journal of physical chemistry. A (2023)
The excited-state properties of an asymmetric triphenylamine-quinoxaline push-pull system wherein triphenylamine and quinoxaline take up the roles of an electron donor and acceptor, respectively, are initially investigated. Further, in order to improve the push-pull effect, powerful electron acceptors, viz., 1,1,4,4-tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded tetracyanobutadiene (also known as expanded-TCBD or exTCBD), have been introduced into the triphenylamine-quinoxaline molecular framework using a catalyst-free [2 + 2] cycloaddition-retroelectrocyclization reaction. The presence of these electron acceptors caused strong ground-state polarization extending the absorption well into the near-IR region accompanied by strong fluorescence quenching due to intramolecular charge transfer (CT). Systematic studies were performed using a suite of spectral, electrochemical, computational, and pump-probe spectroscopic techniques to unravel the intramolecular CT mechanism and to probe the role of TCBD and exTCBD in promoting excited-state CT and separation events. Faster CT in exTCBD-derived compared to that in TCBD-derived push-pull systems has been witnessed in polar benzonitrile.
Keyphrases