Self-Powered Room-Temperature Ethanol Sensor Based on Brush-Shaped Triboelectric Nanogenerator.
Jingwen TianFan WangYafei DingRui LeiYuxiang ShiXinglin TaoShuyao LiYa YangXiangyu ChenPublished in: Research (Washington, D.C.) (2021)
Highly sensitive ethanol sensors have been widely utilized in environmental protection, industrial monitoring, and drink-driving tests. In this work, a fully self-powered ethanol detector operating at room temperature has been developed based on a triboelectric nanogenerator (TENG). The gas-sensitive oxide semiconductor is selected as the sensory component for the ethanol detection, while the resistance change of the oxide semiconductor can well match the "linear" region of the load characteristic curve of TENG. Hence, the output signal of TENG can directly reveal the concentration change of ethanol gas. An accelerator gearbox is applied to support the operation of the TENG, and the concentration change of ethanol gas can be visualized on the Liquid Crystal Display. This fully self-powered ethanol detector has excellent durability, low fabrication cost, and high selectivity of 5 ppm. Therefore, the ethanol detector based on TENG not only provides a different approach for the gas detection but also further demonstrates the application potential of TENG for various sensory devices.