Full-field optical multi-functional angiography based on endogenous hemodynamic characteristics.
Caizhong GuanMin YiQianyi DuHonglian XiongHaishu TanMingyi WangYaguang ZengPublished in: Journal of biophotonics (2021)
Blood flow functional imaging is widely applied in biological research to provide vascular morphological and statistical parameters. It relies on the absorption difference and is, therefore, easily affected by complex biological structures, and it cannot accommodate abundant functional information. We propose a full-field multi-functional angiography method to classify arteriovenous vessels and to display flow velocity and vascular diameter distribution simultaneously. Unlike previous methods, an under-sampled laser Doppler acquisition mode is used to record the low-coherence speckle, and multi-functional angiography is achieved by modulating the endogenous hemodynamic characteristics from low-coherence speckle. To demonstrate the combination of classified angiography, blood flow velocity measurement, and vascular diameter measurement realized using our method, we performed experiments on the flow phantom and living chicken embryos and generated multi-functional angiograms. The proposed method can be used as a label-free multi-functional angiography technique in which red blood cells provide a strong endogenous source of naturally hemodynamic characteristics.