Making glue from seeds and gums: Working with plant-based polymers to introduce students to plant biochemistry.
Thiya MukherjeeRuben Lerma-ReyesKyle A ThompsonKathrin SchrickPublished in: Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology (2019)
Plants and plant products are key to the survival of life on earth. Despite this fact, the significance of plant biochemistry is often underrepresented in science curricula. We designed an innovative laboratory activity to engage students in learning about the biochemical properties of natural polymers produced by plants. The focus of the hands-on activity is on mucilages and gums, which contain complex polysaccharides that have applications in industry. The 1.5-h activity is organized into three laboratory exercises. It begins with a demonstration of the water absorption property of seed coat mucilage upon hydration of seeds from psyllium, a plant that is grown commercially for mucilage production. The second exercise involves microscopy of a variety of plant seeds stained with ruthenium red dye to visualize pectin polysaccharides of the seed mucilage. Students learn about phenotypic variation among plant species and how the seed coat mucilage is beneficial to keep seeds hydrated during germination. The third exercise highlights an industrial application of plant gums as adhesives. The students prepare edible glue made with gum arabic, a type of plant polymer from the dried exudate of the Acacia plant. This three-part activity has been implemented in conjunction with a Girls Researching Our World (GROW) summer workshop for sixth to eighth graders over a 4-year period. It may be adapted as a laboratory activity for students of all ages, for example, to enhance biochemistry education for high-school students or undergraduate non-majors. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):468-475, 2019.