Login / Signup

Juvenile Hormone receptor Met is essential for ovarian maturation in the Desert Locust, Schistocerca gregaria.

Marijke GijbelsCynthia LenaertsJozef Vanden BroeckElisabeth Marchal
Published in: Scientific reports (2019)
Juvenile hormones (JH) are key endocrine regulators produced by the corpora allata (CA) of insects. Together with ecdysteroids, as well as nutritional cues, JH coordinates different aspects of insect postembryonic development and reproduction. The function of the recently characterized JH receptor, Methoprene-tolerant (Met), appears to be conserved in different processes regulated by JH. However, its functional interactions with other hormonal signalling pathways seem highly dependent on the feeding habits and on the developmental and reproductive strategies employed by the insect species investigated. Here we report on the effects of RNA interference (RNAi) mediated SgMet knockdown during the first gonadotrophic cycle in female desert locusts (Schistocerca gregaria). This voracious, phytophagous pest species can form migrating swarms that devastate field crops and harvests in several of the world's poorest countries. A better knowledge of the JH signalling pathway may contribute to the development of novel, more target-specific insecticides to combat this very harmful swarming pest. Using RNAi, we show that the JH receptor Met is essential for ovarian maturation, vitellogenesis and associated ecdysteroid biosynthesis in adult female S. gregaria. Interestingly, knockdown of SgMet also resulted in a significant decrease of insulin-related peptide (SgIRP) and increase of neuroparsin (SgNP) 3 and 4 transcript levels in the fat body, illustrating the existence of an intricate regulatory interplay between different hormonal factors. In addition, SgMet knockdown in females resulted in delayed display of copulation behaviour with virgin males, when compared with dsGFP injected control animals. Moreover, we observed an incapacity of adult dsSgMet injected female locusts to oviposit during the time of the experimental setup. As such, SgMet is an essential gene playing crucial roles in the endocrine communication necessary for successful reproduction of the desert locust.
Keyphrases
  • transcription factor
  • tyrosine kinase
  • type diabetes
  • healthcare
  • aedes aegypti
  • metabolic syndrome
  • gene expression
  • copy number
  • binding protein
  • skeletal muscle
  • nucleic acid
  • zika virus
  • childhood cancer