0.68% of solar-to-hydrogen efficiency and high photostability of organic-inorganic membrane catalyst.
Wei LiWen DuanGuocheng LiaoFanfan GaoYusen WangRongxia CuiJincai ZhaoChuanyi WangPublished in: Nature communications (2024)
Solar-driven flat-panel H 2 O-to-H 2 conversion is an important technology for value-added solar fuel production. However, most frequently used particulate photocatalysts are hard to achieve stable photocatalysis in flat-panel reaction module due to the influence of mechanical shear force. Herein, a highly active CdS@SiO 2 -Pt composite with rapid CdS-to-Pt electron transfer and restrained photoexciton recombination was prepared to process into an organic-inorganic membrane by compounding with polyvinylidene fluoride (PVDF). This PVDF networked organic-inorganic membrane displays high photostability and excellent operability, achieving improved simulated sunlight-driven alkaline H 2 O-to-H 2 conversion activity (213.48 mmol m -2 h -1 ) following a 0.68% of solar-to-hydrogen efficiency. No obvious variation in its appearance and micromorphology was observed even being recycled for 50-times, which considerably outperforms the existing membrane photocatalysts. Subsequently, a homemade panel H 2 O-to-H 2 conversion system was fabricated to obtain a 0.05% of solar-to-hydrogen efficiency. In this study, we opens up a prospect for practical application of photocatalysis technology.