Login / Signup

Hierarchical Carbon Nanocages as Superior Supports for Photothermal CO 2 Catalysis.

Zhijie ChenXudong DongZi-Xuan SunXingda AnChaoran LiShuang LiuJiahui ShenChunpeng WuJiaqi WangZidi WangZhijie ZhuYuxuan ZhouKewei YuYueru MaJiari HeKai FengLe HeZheng Hu
Published in: ACS nano (2024)
The exploitation of hierarchical carbon nanocages with superior light-to-heat conversion efficiency, together with their distinct structural, morphological, and electronic properties, in photothermal applications could provide effective solutions to long-standing challenges in diverse areas. Here, we demonstrate the discovery of pristine and nitrogen-doped hierarchical carbon nanocages as superior supports for highly loaded, small-sized Ru particles toward enhanced photothermal CO 2 catalysis. A record CO production rate of 3.1 mol·g Ru -1 ·h -1 with above 90% selectivity in flow reactors was reached for hierarchical nitrogen-doped carbon-nanocage-supported Ru clusters under 2.4 W·cm -2 illumination without external heating. Detailed studies reveal that the enhanced performance originates from the strong broadband sunlight absorption and efficient light-to-heat conversion of nanocage supports as well as the excellent intrinsic catalytic reactivity of sub-2 nm Ru particles. Our study reveals the great potential of hierarchical carbon nanocages in photothermal catalysis to reduce the fossil fuel consumption of various industrial chemical processes and stimulates interest in their exploitation for other demanding photothermal applications.
Keyphrases
  • photodynamic therapy
  • cancer therapy
  • drug delivery
  • drug release
  • energy transfer
  • heat stress
  • heavy metals
  • wastewater treatment
  • gene expression
  • high speed
  • visible light
  • walled carbon nanotubes