Login / Signup

Phosphorylation of proliferating cell nuclear antigen promotes cancer progression by activating the ATM/Akt/GSK3β/Snail signaling pathway.

Bo PengJanice OrtegaLiya GuZhijie ChangGuo-Min Li
Published in: The Journal of biological chemistry (2019)
Proliferating cell nuclear antigen (PCNA) and its posttranslational modifications regulate DNA metabolic reactions, including DNA replication and repair, at replication forks. PCNA phosphorylation at Tyr-211 (PCNA-Y211p) inhibits DNA mismatch repair and induces misincorporation during DNA synthesis. Here, we describe an unexpected role of PCNA-Y211p in cancer promotion and development. Cells expressing phosphorylation-mimicking PCNA, PCNA-Y211D, show elevated hallmarks specific to the epithelial-mesenchymal transition (EMT), including the up-regulation of the EMT-promoting factor Snail and the down-regulation of EMT-inhibitory factors E-cadherin and GSK3β. The PCNA-Y211D-expressing cells also exhibited active cell migration and underwent G2/M arrest. Interestingly, all of these EMT-associated activities required the activation of ATM and Akt kinases, as inactivating these protein kinases by gene knockdown or inhibitors blocked EMT-associated signaling and cell migration. We concluded that PCNA phosphorylation promotes cancer progression via the ATM/Akt/GSK3β/Snail signaling pathway. In conclusion, this study identifies a novel PCNA function and reveals the molecular basis of phosphorylated PCNA-mediated cancer development and progression.
Keyphrases