Login / Signup

Dioxygen Reactivity of an Iron Complex of 2-Aminophenol-Appended Ligand: Crystallographic Evidence of the Aromatic Ring Cleavage Product of the 2-Aminophenol Unit.

Ganesh Chandra PaulSridhar BanerjeeChandan Mukherjee
Published in: Inorganic chemistry (2016)
2-Aminophenol appended pentadentate ligand H2GanAP was synthesized by mixing equimolar amounts of 2-[bis(2-pyridylmethyl)aminomethyl]aniline (A) and 3,5-di-tert-butyl catechol in hexane in the presence of Et3N under air. The ligand reacted with Fe(ClO4)2·6H2O or Fe(ClO4)3·6H2O in the presence of tetrabutylammonium perchlorate, and Et3N under air and provided a μ2 oxo-bridged dinuclear iron complex (1). X-ray single-crystal analysis of complex 1 revealed the presence of a furan derivative, resulting from the oxidative aromatic C-C bond cleavage product of 2-aminophenol derivative, in the coordination sphere of each iron center. Mechanistic investigation for the formation of complex 1 established that in the absence of molecular oxygen no oxidation of the appended 2-amidophenolate unit took place. An iron(III)-amidophenolate complex, formed initially, further reacted with molecular oxygen and caused oxidative aromatic C-C bond cleavage via a putative alkylperoxo species.
Keyphrases
  • iron deficiency
  • magnetic resonance imaging
  • nitric oxide
  • magnetic resonance
  • transcription factor
  • cystic fibrosis
  • ionic liquid
  • electron transfer
  • solid state