Study of High-Temperature Behaviour of ZnO by Ab Initio Molecular Dynamics Simulations and X-ray Absorption Spectroscopy.
Dmitry BocharovInga PudzaKonstantin KlementievMatthias KrackAlexei KuzminPublished in: Materials (Basel, Switzerland) (2021)
Wurtzite-type zinc oxide (w-ZnO) is a widely used material with a pronounced structural anisotropy along the c axis, which affects its lattice dynamics and represents a difficulty for its accurate description using classical models of interatomic interactions. In this study, ab initio molecular dynamics (AIMD) was employed to simulate a bulk w-ZnO phase in the NpT ensemble in the high-temperature range from 300 K to 1200 K. The results of the simulations were validated by comparison with the experimental Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra and known diffraction data. AIMD NpT simulations reproduced well the thermal expansion of the lattice, and the pronounced anharmonicity of Zn-O bonding was observed above 600 K. The values of mean-square relative displacements and mean-square displacements for Zn-O and Zn-Zn atom pairs were obtained as a function of interatomic distance and temperature. They were used to calculate the characteristic Einstein temperatures. The temperature dependences of the O-Zn-O and Zn-O-Zn bond angle distributions were also determined.