Login / Signup

A computational method to reveal psychological constructs from text data.

Alina HerderichHeribert H FreudenthalerDavid Garcia
Published in: Psychological methods (2024)
When starting to formalize psychological constructs, researchers traditionally rely on two distinct approaches: the quantitative approach, which defines constructs as part of a testable theory based on prior research and domain knowledge often deploying self-report questionnaires, or the qualitative approach, which gathers data mostly in the form of text and bases construct definitions on exploratory analyses. Quantitative research might lead to an incomplete understanding of the construct, while qualitative research is limited due to challenges in the systematic data processing, especially at large scale. We present a new computational method that combines the comprehensiveness of qualitative research and the scalability of quantitative analyses to define psychological constructs from semistructured text data. Based on structured questions, participants are prompted to generate sentences reflecting instances of the construct of interest. We apply computational methods to calculate embeddings as numerical representations of the sentences, which we then run through a clustering algorithm to arrive at groupings of sentences as psychologically relevant classes. The method includes steps for the measurement and correction of bias introduced by the data generation, and the assessment of cluster validity according to human judgment. We demonstrate the applicability of our method on an example from emotion regulation. Based on short descriptions of emotion regulation attempts collected through an open-ended situational judgment test, we use our method to derive classes of emotion regulation strategies. Our approach shows how machine learning and psychology can be combined to provide new perspectives on the conceptualization of psychological processes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Keyphrases