Login / Signup

Biosynthesis of bismuth selenide nanoparticles using chalcogen-metabolizing bacteria.

Masashi KurodaSoshi SudaMamoru SatoHiroyuki AyanoYuji OhishiHiroshi NishikawaSatoshi SodaMichihiko Ike
Published in: Applied microbiology and biotechnology (2019)
Cost and energy reductions in the production process of bismuth chalcogenide (BC) semiconductor materials are essential to make thermoelectric generators comprised of BCs profitable and CO2 neutral over their life cycle. In this study, as an eco-friendly production method, bismuth selenide (Bi2Se3) nanoparticles were synthesized using the following five strains of chalcogen-metabolizing bacteria: Pseudomonas stutzeri NT-I, Pseudomonas sp. RB, Stenotrophomonas maltophilia TI-1, Ochrobactrum anthropi TI-2, and O. anthropi TI-3 under aerobic conditions. All strains actively volatilized selenium (Se) by reducing selenite, possibly to organoselenides. In the growth media containing bismuth (Bi) and Se, all strains removed Bi and Se concomitantly and synthesized nanoparticles containing Bi and Se as their main components. Particles synthesized by strain NT-I had a theoretical elemental composition of Bi2Se3, whereas those synthesized by other strains contained a small amount of sulfur in addition to Bi and Se, making strain NT-I the best Bi2Se3 synthesizer among the strains used in this study. The particle sizes were 50-100 nm in diameter, which is sufficiently small for nanostructured semiconductor materials that exhibit quantum size effect. Successful synthesis of Bi2Se3 nanoparticles could be attributed to the high Se-volatilizing activities of the bacterial strains. Selenol-containing compounds as intermediates of Se-volatilizing metabolic pathways, such as methane selenol and selenocysteine, may play an important role in biosynthesis of Bi2Se3.
Keyphrases
  • escherichia coli
  • oxide nanoparticles
  • staphylococcus aureus
  • biofilm formation
  • life cycle
  • candida albicans