Photoreactive Carbon Dioxide Capture by a Zirconium-Nanographene Metal-Organic Framework.
Xin ZhengMatthew C DrummerHaiying HeThomas M RayderJens NiklasNicholas P WeingartzIgor L BolotinVarun SinghBoris V KramarLin X ChenJoseph T HuppOleg G PoluektovOmar K FarhaPeter ZapolKsenija D GlusacPublished in: The journal of physical chemistry letters (2023)
The mechanism of photochemical CO 2 reduction to formate by PCN-136, a Zr-based metal-organic framework (MOF) that incorporates light-harvesting nanographene ligands, has been investigated using steady-state and time-resolved spectroscopy and density functional theory (DFT) calculations. The catalysis was found to proceed via a "photoreactive capture" mechanism, where Zr-based nodes serve to capture CO 2 in the form of Zr-bicarbonates, while the nanographene ligands have a dual role of absorbing light and storing one-electron equivalents for catalysis. We also find that the process occurs via a "two-for-one" route, where a single photon initiates a cascade of electron/hydrogen atom transfers from the sacrificial donor to the CO 2 -bound MOF. The mechanistic findings obtained here illustrate several advantages of MOF-based architectures in molecular photocatalyst engineering and provide insights on ways to achieve high formate selectivity.