Protective role of Parkin in skeletal muscle contractile and mitochondrial function.
Gilles GouspillouRichard GodinJérome PiquereauMartin PicardMahroo MofarrahiJasmin MathewFennigje M Purves-SmithNicolas SgariotoRussell T HeppleYan BurelleSabah N A HussainPublished in: The Journal of physiology (2018)
Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2-/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2-/- mice display a slight but significant decrease in its specific force. Park2-/- muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2+/+ muscles, the mitochondrial function of Park2-/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2-/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles.