Login / Signup

A Hybrid Syntactic Foam-Based Open-Cell Foam with Reversible Actuation.

Siavash SarrafanGuoqiang Li
Published in: ACS applied materials & interfaces (2022)
Herein, we report the first hybrid open-cell foam with revisable actuation. Open-cell foams with revisable actuation are favoable for many applications. However, it is challenging to fabricate such open-cell foams with very low density. This study presents a novel concept of creating hybrid two-way (2W) shape memory open-cell foams using two-way shape-memory-polymer-based syntactic foams as the matrix. Previously, a syntactic foam prepared by incorporating hollow glass microbubbles in the cross-linked semicrystalline cis -poly(1,4-butadiene) (cPBD) was proved to have enhanced strength and specific energy output compared to the neat cPBD. Here, the same syntactic foam was used as the matrix, and the open-cell structure was produced by the salt-leaching method. The hybrid foam exhibits very attractive properties, including reversible actuation strain up to 50%, density as low as 0.07 g/cm 3 , energy output up to 0.23 J/g, tensile strength up to 0.84 MPa, elongation at break as high as 339%, high thermal stability with peak decomposition temperature at 450 °C, and Joule heating and strain sensing capabilities. The tensile strength and stiffness are shown to follow the well-known Gibson-Ashby model for porous materials. Combining the open-cell structure with the reversible actuation and other functionalities enables numerous potential applications for the prepared hybrid foam, including adjustable filters, insulators, sealers, and smart scaffolds.
Keyphrases
  • single cell
  • minimally invasive
  • cell therapy
  • stem cells
  • mass spectrometry
  • climate change
  • molecularly imprinted
  • municipal solid waste