Framework-Induced Electrochemiluminescence Enhancement of an AIEgen-Based MOF Coupled with Heterostructured TiO 2 @Ag NPs as an Efficient Coreaction Accelerator for Sensitive Biosensing.
Yu DuFaying LiXiang RenDan WuHong Min MaXuan KuangJingshuai LiRui FengQin WeiPublished in: Analytical chemistry (2024)
In conventional metal-organic framework (MOF) luminophore-involved electrochemiluminescence (ECL) systems, the aggregation-caused quenching commonly exists for the organic luminescent ligands, limiting the ECL efficiency and detection sensitivity. Herein, by employing the aggregation-induced emission luminogen (AIEgen) 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (H 4 TCBPE) as a ligand, one high-efficiency ECL emitter (Zr-MOF) was synthesized through a simple hydrothermal reaction. Compared with H 4 TCBPE monomers and their aggregates, the resultant Zr-MOF possesses the strongest ECL emission, which is mainly attributed to the framework-induced ECL enhancement. Specifically, the heterostructure was prepared by the deposition of silver nanoparticles on TiO 2 microflowers and utilized as an efficient coreaction accelerator. Remarkably, the formative heterojunction can increase the interfacial charge transfer efficiency and promote the carrier separation, facilitating the oxidation of coreactant tripropylamine. In this way, a novel aptamer-mediated ECL sensing platform is constructed, achieving the sensitive analysis of adenosine triphosphate with a low detection limit of 0.17 nM. As a proof-of-concept study, this work may enlighten the rational design of new-type MOF-based ECL materials and expand the application scope of the ECL technology.
Keyphrases
- metal organic framework
- silver nanoparticles
- quantum dots
- sensitive detection
- high efficiency
- label free
- visible light
- high glucose
- energy transfer
- pet imaging
- wastewater treatment
- drug induced
- nitric oxide
- high throughput
- oxidative stress
- real time pcr
- anaerobic digestion
- electron transfer
- oxide nanoparticles
- magnetic nanoparticles