Login / Signup

A Variable Data Fusion Approach for Electromechanical Impedance-Based Damage Detection.

Shishir Kumar SinghRohan SomanTomasz WandowskiPaweł Malinowski
Published in: Sensors (Basel, Switzerland) (2020)
There is continuing research in the area of structural health monitoring (SHM) as it may allow a reduction in maintenance costs as well as lifetime extension. The search for a low-cost health monitoring system that is able to detect small levels of damage is still on-going. The present study is one more step in this direction. This paper describes a data fusion technique by combining the information for robust damage detection using the electromechanical impedance (EMI) method. The EMI method is commonly used for damage detection due to its sensitivity to low levels of damage. In this paper, the information of resistance (R) and conductance (G) is studied in a selected frequency band and a novel data fusion approach is proposed. A novel fused parameter (F) is developed by combining the information from G and R. The difference in the new metric under different damage conditions is then quantified using established indices such as the root mean square deviation (RMSD) index, mean absolute percentage deviation (MAPD), and root mean square deviation using k-th state as the reference (RMSDk). The paper presents an application of the new metric for detection of damage in three structures, namely, a thin aluminum (Al) plate with increasing damage severity (simulated with a drilled hole of increasing size), a glass fiber reinforced polymer (GFRP) composite beam with increasing delamination and another GFRP plate with impact-induced damage scenarios. Based on the experimental results, it is apparent that the variable F increases the robustness of the damage detection as compared to the quantities R and G.
Keyphrases