Evidence of association of circulating epigenetic-sensitive biomarkers with suspected coronary heart disease evaluated by Cardiac Computed Tomography.
Teresa InfanteErnesto ForteConcetta SchianoBruna PunzoFilippo CademartiriCarlo CavaliereMarco SalvatoreClaudio NapoliPublished in: PloS one (2019)
Circulating biomarkers available in clinical practice do not allow to stratify patients with coronary heart disease (CHD) prior the onset of a clinically relevant event. We evaluated the methylation status of specific genomic segments and gene expression in peripheral blood of patients undergoing Cardiac Computed Tomography (CCT) for CHD (n = 95). We choose to investigate cholesterol metabolism. Methylation and gene expression of low density lipoprotein receptor (LDLR), sterol regulatory element-binding factor 2 (SREBF2) and ATP-binding cassette transporter 1 (ABCA1) were evaluated by qRT-PCR. Calcium score (CACS), stenosis degree, total plaque volume (TPV), calcified plaque volume (CPV), non-calcified plaque volume (NCPV) and plaque burden (PB) were assessed in all CHD patients (n = 65). The percentage of methylation at the specific analyzed segment of LDLR promoter was higher in CHD patients vs healthy subjects (HS) (n = 30) (p = 0.001). LDLR, SREBF2 and ABCA1 mRNAs were up-regulated in CHD patients vs HS (p = 0.02; p = 0.019; p = 0.008). SREBF2 was overexpressed in patients with coronary stenosis ≥50% vs subjects with stenosis <50% (p = 0.036). After adjustment for risk factors and clinical features, ABCA1 (p = 0.005) and SREBF2 (p = 0.010) gene expression were identified as independent predictors of CHD and severity. ROC curve analysis revealed a good performance of ABCA1 on predicting CHD (AUC = 0.768; p<0.001) and of SREBF2 for the prediction of disease severity (AUC = 0.815; p<0.001). Moreover, adjusted multivariate analysis demonstrated SREBF2 as independent predictor of CPV, NCPV and TPV (p = 0.022; p = 0.002 and p = 0.006) and ABCA1 as independent predictor of NCPV and TPV (p = 0.002 and p = 0.013). CHD presence and characteristics are related to selected circulating transcriptional and epigenetic-sensitive biomarkers linked to cholesterol pathway. More extensive analysis of CHD phenotypes and circulating biomarkers might improve and personalize cardiovascular risk stratification in the clinical settings.
Keyphrases
- gene expression
- dna methylation
- end stage renal disease
- computed tomography
- low density lipoprotein
- ejection fraction
- newly diagnosed
- chronic kidney disease
- risk factors
- patients undergoing
- peripheral blood
- clinical practice
- prognostic factors
- transcription factor
- magnetic resonance imaging
- peritoneal dialysis
- heart failure
- pulmonary embolism
- magnetic resonance
- coronary artery
- patient reported
- risk assessment
- binding protein