Unveiling the Mystery of LiF within Solid Electrolyte Interphase in Lithium Batteries.
Zhen LiLi WangXiaodong HuangXiangming HePublished in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Over the past decades, significant advances have been made in lithium-ion batteries. However, further requirement on the electrochemical performance is still a powerful motivator to improve battery technology. The solid electrolyte interphase (SEI) is considered as a key component on negative electrode, having been proven to be crucial for the performance, even in safety of batteries. Although numerous studies have focused on SEI in recent years, its specific properties, including structure and composition, remain largely unclear. Particularly, LiF, a common and important component in SEI, has sparked debates among researchers, resulting in divergent viewpoints. In this review, the recent research findings on SEI and delve into the characteristics of the LiF component is aim to consolidated. The cause of SEI formation and the evolution of SEI models is summarized. The distinctive properties of SEI generated on various negative electrodes is further discussed, the ongoing scholarly controversy surrounding the function of LiF within SEI, and the specific physicochemical properties about LiF and its synergistic effect in heterogeneous components. The objective is to facilitate better understanding of SEI and the role of the LiF component, ultimately contributing to the development of Li batteries with enhanced electrochemical performance and safety for battery communities.