Multicriteria Decision-Making Approach for Aggregation Operators of Pythagorean Fuzzy Hypersoft Sets.
Imran SiddiqueRana Muhammad ZulqarnainRifaqat AliFahd JaradAiyared IampanPublished in: Computational intelligence and neuroscience (2021)
The Pythagorean fuzzy hypersoft set (PFHSS) is the most advanced extension of the intuitionistic fuzzy hypersoft set (IFHSS) and a suitable extension of the Pythagorean fuzzy soft set. In it, we discuss the parameterized family that contracts with the multi-subattributes of the parameters. The PFHSS is used to correctly assess insufficiencies, anxiety, and hesitancy in decision-making (DM). It is the most substantial notion for relating fuzzy data in the DM procedure, which can accommodate more uncertainty compared to available techniques considering membership and nonmembership values of each subattribute of given parameters. In this paper, we will present the operational laws for Pythagorean fuzzy hypersoft numbers (PFHSNs) and also some fundamental properties such as idempotency, boundedness, shift-invariance, and homogeneity for Pythagorean fuzzy hypersoft weighted average (PFHSWA) and Pythagorean fuzzy hypersoft weighted geometric (PFHSWG) operators. Furthermore, a novel multicriteria decision-making (MCDM) approach has been established utilizing presented aggregation operators (AOs) to resolve decision-making complications. To validate the useability and pragmatism of the settled technique, a brief comparative analysis has been conducted with some existing approaches.