Login / Signup

Photochemical Approach for the Preparation of N-Alkyl/Aryl Substituted Fulleropyrrolidines: Photoaddition Reactions of Silyl Group Containing α-Aminonitriles with Fullerene C60.

Suk Hyun LimJiin OhKeepyung NahmSunguk NohJun Ho ShimCheolhee KimEunae KimDae Won Cho
Published in: The Journal of organic chemistry (2019)
The photochemical reactions of C60 with N-(trimethylsilyl)methyl substituted and N-alkyl/aryl substituted α-aminonitriles were explored to evaluate the scope and reaction efficiency depending on the structural nature of amine substrates. The results showed that photoreactions of C60 with trimethylsilyl group containing N-alkyl amines produced predominantly both trimethylsilyl and cyano group containing trans-pyrrolidine ring fused fulleropyrrolidines in a chemo- and stereoselective manner. Interestingly, photoreactions of C60 with N-branched alkyl substituted amines led to exclusive formation of non-silyl containing cycloadducts. In contrast to those of N-alkyl substituted α-aminonitriles, photoreactions of N-(trimethylsilyl)methyl and N-aryl substituted α-aminonitriles gave rise to the formation of both trans- and cis-isomeric fulleropyrrolidines with an inefficient and non-stereoselective manner. The feasible mechanistic pathways leading to generation of fulleropyrrolidines are 1,3-dipolar cycloaddition of the azomethine ylides, generated by either a single electron transfer (SET) (under N2-purged conditions) or H atom abstraction (under O2-purged conditions) process, to fullerene C60. The stereoselectivities of photoproducts depending on the nature of amines are likely to be associated with conformational stabilities of in situ generated azoemthine ylides.
Keyphrases