Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics.
Pooya AzizianJasmina Casals-TerréJordi RicartJoan M CabotPublished in: Microsystems & nanoengineering (2023)
By manipulating the geometry and surface chemistry of microfluidic channels, capillary-driven microfluidics can move and stop fluids spontaneously without external instrumentation. Furthermore, complex microfluidic circuits can be preprogrammed by synchronizing the capillary pressures and encoding the surface tensions of microfluidic chips. A key component of these systems is the capillary valve. However, the main concern for these valves is the presence of unwanted diffusion during the valve loading and activation steps that can cause cross-contamination. In this study, we design and validate a novel diffusion-free capillary valve: the π-valve. This valve consists of a 3D structure and a void area. The void acts as a spacer between two fluids to avoid direct contact. When the valve is triggered, the air trapped within the void is displaced by pneumatic suction induced from the capillary flow downstream without introducing a gas bubble into the circuit. The proposed design eliminates diffusive mixing before valve activation. Numerical simulation is used to study the function and optimize the dimensions of the π-valve, and 3D printing is used to fabricate either the mould or the microfluidic chip. A comparison with a conventional valve (based on a constriction-expansion valve) demonstrates that the π-valve eliminates possible backflow into the valve and reduces the mixing and diffusion during the loading and trigger steps. As a proof-of-concept, this valve is successfully implemented in a capillary-driven circuit for the determination of benzodiazepine, achieving the successive release of 3 solutions in a 3D-printed microfluidic chip without external instrumentation. The results show a 40% increase in the fluorescence intensity using the π-valve relative to the conventional value. Overall, the π-valve prevents cross-contamination, minimizes sample use, and facilitates a sophisticated preprogrammed release of fluids, offering a promising tool for conducting automated immunoassays applicable at point-of-care testing.
Keyphrases
- aortic valve
- mitral valve
- aortic stenosis
- transcatheter aortic valve replacement
- high throughput
- aortic valve replacement
- transcatheter aortic valve implantation
- circulating tumor cells
- ejection fraction
- spinal cord injury
- left ventricular
- machine learning
- heart failure
- drinking water
- oxidative stress
- endothelial cells
- label free
- mass spectrometry
- sensitive detection
- simultaneous determination