Login / Signup

α2δ-1 couples to NMDA receptors in the hypothalamus to sustain sympathetic vasomotor activity in hypertension.

Huijie MaShao-Rui ChenHong ChenJing-Jing ZhouDe-Pei LiHui-Lin Pan 潘惠麟
Published in: The Journal of physiology (2018)
Increased glutamate NMDA receptor (NMDAR) activity in the paraventricular nucleus (PVN) of the hypothalamus leads to augmented sympathetic outflow in hypertension. However, the molecular mechanisms underlying this effect remain unclear. α2δ-1, previously considered to be a voltage-activated calcium channel subunit, is a newly discovered powerful regulator of NMDARs. In the present study, we determined the role of α2δ-1 in regulating synaptic NMDAR activity of rostral ventrolateral medulla (RVLM)-projecting PVN neurons in spontaneously hypertensive rats (SHRs). We show that the protein levels of α2δ-1 and NMDARs in synaptosomes and the α2δ-1-NMDAR complexes in the hypothalamus were substantially higher in SHRs than in normotensive control rats. The basal amplitude of evoked NMDAR currents and NMDAR-mediated synaptic glutamate release in RVLM-projecting PVN neurons were significantly increased in SHRs. Strikingly, inhibiting α2δ-1 activity with gabapentin or disrupting the α2δ-1-NMDAR association with an α2δ-1 C-terminus peptide completely normalized the amplitude of evoked NMDAR currents and NMDAR-mediated synaptic glutamate release in RVLM-projecting PVN neurons in SHRs. In addition, microinjection of the α2δ-1 C-terminus peptide into the PVN substantially reduced arterial blood pressure and renal sympathetic nerve discharges in SHRs. Our findings indicate that α2δ-1-bound NMDARs in the PVN are required for the potentiated presynaptic and postsynaptic NMDAR activity of PVN presympathetic neurons and for the elevated sympathetic outflow in hypertension. α2δ-1-bound NMDARs may be an opportune target for treating neurogenic hypertension.
Keyphrases