Login / Signup

Bacterial Resuscitation from Starvation-Induced Dormancy Results in Phenotypic Diversity Coupled with Translational Activity Depending on Carbon Substrate Availability.

Soo Bin KimEun Sun LyouMin Sung KimTae Kwon Lee
Published in: Microbial ecology (2022)
Dormancy is a survival strategy of stressed bacteria inhabiting a various environment. Frequent dormant-active transitions owing to environmental changes play an important role in functional redundancy. However, a proper understanding of the phenotypic changes in bacteria during these transitions remains to be clarified. In this study, orthogonal approaches, such as electron microscopy, flow cytometry, and Raman spectroscopy, which can evaluate phenotypic heterogeneity at the single-cell level, were used to observe morphological and molecular phenotypic changes in resuscitated cells, and RNA sequencing (RNASeq) was used to determine the genetic characteristics associated with phenotypes. Within 12 h of the resuscitation process, morphological (cell size and shape) and physiological (growth and viability) characteristics as well as molecular phenotypes (cellular components) were found to be recovered to the extent that they were similar to those in active cells. The recovery rate and detailed phenotypic properties of the resuscitated cells differed significantly depending on the type or concentration of carbon sources. RNASeq analysis revealed that genes related to translation were significantly upregulated under all resuscitation conditions. The simpler the carbon source (e.g., glucose), the higher the expression of genes involved in cellular repair, and the more complex the carbon source (e.g., beef extract), the higher the expression of genes associated with increased energy production associated with cellular aerobic respiration. This study of phenotypic plasticity of resuscitated cells provides fundamental insight into understanding the adaptive fine-tuning of the microbiome in response to environmental changes and the functional redundancy resulting from phenotype heterogeneity.
Keyphrases