Detection of Low-Concentration Biological Samples Based on a QBIC Terahertz Metamaterial Sensor.
Bing DongBo WeiDongshan WeiZhilin KeDongxiong LingPublished in: Sensors (Basel, Switzerland) (2024)
Quasi-bound state in the continuum (QBIC) can effectively enhance the interaction of terahertz (THz) wave with matter due to the tunable high-Q property, which has a strong potential application in the detection of low-concentration biological samples in the THz band. In this paper, a novel THz metamaterial sensor with a double-chain-separated resonant cavity structure based on QBIC is designed and fabricated. The process of excitation of the QBIC mode is verified and the structural parameters are optimized after considering the ohmic loss by simulations. The simulated refractive index sensitivity of the sensor is up to 544 GHz/RIU, much higher than those of recently reported THz metamaterial sensors. The sensitivity of the proposed metamaterial sensor is confirmed in an experiment by detecting low-concentration lithium citrate (LC) and bovine serum albumin (BSA) solutions. The limits of detection (LoDs) are obtained to be 0.0025 mg/mL (12 μM) for LC and 0.03125 mg/mL (0.47 μM) for BSA, respectively, both of which excel over most of the reported results in previous studies. These results indicate that the proposed THz metamaterial sensor has excellent sensing performances and can well be applied to the detection of low-concentration biological samples.