A generative model of the connectome with dynamic axon growth.
Yuanzhe LiuCaio SeguinRichard F BetzelDanyal AkarcaMaria Angelique Di BiaseAndrew ZaleskyPublished in: bioRxiv : the preprint server for biology (2024)
Generative models of the human connectome provide insight into principles driving brain network development. However, current models do not capture axonal outgrowth, which is crucial to the formation of neural circuits. We develop a novel generative connectome model featuring dynamic axonal outgrowth, revealing the contribution of microscopic axonal guidance to the network topology and axonal geometry of macroscopic connectomes. Simple axonal outgrowth rules representing continuous chemoaffinity gradients are shown to generate complex, brain-like topologies and realistic axonal fascicle architectures. Our model is sufficiently sensitive to capture subtle interindividual differences in axonal outgrowth between healthy adults. Our results are significant because they reveal core principles that may give rise to both complex brain networks and brain-like axonal bundles, unifying neurogenesis across scales.