ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst.
Eleonora PargolettiAnnalisa SalviAlessia GiordanaGiuseppina CerratoMariangela LonghiAlessandro MinguzziGiuseppe CappellettiAlberto VertovaPublished in: Nanomaterials (Basel, Switzerland) (2020)
One of the major drawbacks in Lithium-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR). In this context, better performances can be achieved by adopting a suitable electrocatalyst, such as MnO2. Herein, we tried to design nano-MnO2 tuning the final ORR electroactivity by tailoring the doping agent (Co or Fe) and its content (2% or 5% molar ratios). Staircase-linear sweep voltammetries (S-LSV) were performed to investigate the nanopowders electrocatalytic behavior in organic solvent (propylene carbonate, PC and 0.15 M LiNO3 as electrolyte). Two percent Co-doped MnO2 revealed to be the best-performing sample in terms of ORR onset shift (of ~130 mV with respect to bare glassy carbon electrode), due to its great lattice defectivity and presence of the highly electroactive γ polymorph (by X-ray diffraction analyses, XRPD and infrared spectroscopy, FTIR). 5% Co together with 2% Fe could also be promising, since they exhibited fewer diffusive limitations, mainly due to their peculiar pore distribution (by Brunauer-Emmett-Teller, BET) that disfavored the cathode clogging. Particularly, a too-high Fe content led to iron segregation (by energy dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS and FTIR) provoking a decrease of the electroactive sites, with negative consequences for the ORR.
Keyphrases
- solid state
- metal organic framework
- ionic liquid
- high resolution
- dual energy
- visible light
- electron microscopy
- quantum dots
- ion batteries
- solar cells
- highly efficient
- aqueous solution
- reduced graphene oxide
- gas chromatography mass spectrometry
- mass spectrometry
- water soluble
- single cell
- gas chromatography
- contrast enhanced
- carbon nanotubes