A Hybrid MADM Model for Newly Graduated Nurse's Competence Evaluation and Improvement.
Fengmin ChengYanjun JinChing-Wen ChienLei XiongYen-Ching ChuangPublished in: Journal of healthcare engineering (2021)
Nursing departments in hospitals must evaluate the practical competency of newly graduated nurses and assist them to increase their competence. Competency assessments often consider multiple qualitative attributes and use expert knowledge as the basis for decision-making. This study proposes a hybrid multiple attribute decision-making (MADM) model that determines practical competency of the newly graduated nurse as an evaluation framework. A causal influence-network diagram (CIND) and influential weights are obtained from nursing experts' clinical experience using the decision-making trial and evaluation laboratory (DEMATEL)-based analytical network process analysis (DANP). The MOORA-AS method is then used to evaluate the ability expectation ratio-gap for newly graduated nurses in practice. The CIND is used to allow each newly graduated nurse to reduce the performance ratio-gaps between the current level and the aspirational level from a systematic perspective. The empirical data applies to a third-class and a first-class hospital in China. The results show that the proposed hybrid MADM model has reliable results and allows nursing department decision-makers/managers to easily evaluate and systematically improve competencies for newly graduated nurses.