The Glycosylphosphatidylinositol Transamidase Complex Subunit PbGPI16 of Plasmodium berghei Is Important for Inducing Experimental Cerebral Malaria.
Qingyang LiuYan ZhaoLi ZhengXiaotong ZhuLiwang CuiYaming CaoPublished in: Infection and immunity (2018)
In animal models of experimental cerebral malaria (ECM), the glycosylphosphatidylinositols (GPIs) and GPI anchors are the major factors that induce nuclear factor kappa B (NF-κB) activation and proinflammatory responses, which contribute to malaria pathogenesis. GPIs and GPI anchors are transported to the cell surface via a process called GPI transamidation, which involves the GPI transamidase (GPI-T) complex. In this study, we showed that GPI16, one of the GPI-T subunits, is highly conserved among Plasmodium species. Genetic knockout of pbgpi16 (Δpbgpi16) in the rodent malaria parasite Plasmodium berghei strain ANKA led to a significant reduction of the amounts of GPIs in the membranes of merozoites, as well as surface display of several GPI-anchored merozoite surface proteins. Compared with the wild-type parasites, Δpbgpi16 parasites in C57BL/6 mice caused much less NF-κB activation and elicited a substantially attenuated T helper type 1 response. As a result, Δpbgpi16 mutant-infected mice displayed much less severe brain pathology, and considerably fewer Δpbgpi16 mutant-infected mice died from ECM. This study corroborated the GPI toxin as a significant inducer of ECM and further suggested that vaccines against parasite GPIs may be a promising strategy to limit the severity of malaria.
Keyphrases
- plasmodium falciparum
- wild type
- nuclear factor
- toll like receptor
- signaling pathway
- escherichia coli
- high fat diet induced
- cell surface
- subarachnoid hemorrhage
- lps induced
- multiple sclerosis
- gene expression
- immune response
- type diabetes
- pi k akt
- insulin resistance
- skeletal muscle
- regulatory t cells
- early onset
- copy number
- drug induced