Login / Signup

Backscattering-Based Discrimination of Microparticles Using an Optofluidic Multiangle Scattering Chip.

Reza EbrahimifardPeer ErfleAndreas DietzelGeorg Garnweitner
Published in: ACS omega (2022)
In this research, we designed and fabricated an optofluidic chip for the detection and differentiation of single particles via the combination of backscattered (BSC) and forward-scattered (FSC) or side-scattered (SSC) light intensity. The high sensitivity of BSC light to the refractive index of the particles enabled an effective approach for the differentiation of individual particles based on the type of material. By recording BSC as well as FSC and SSC light intensities from single particles, transiting through the illumination zone in a microfluidic channel, the size and type of material could be detected simultaneously. The analysis of model samples of polystyrene (PS), as a primary microplastic particle, and silica microspheres showed substantially higher BSC signal values of PS because of a larger refractive index compared to the silica. The scatter plots correlating contributions of BSC (FSC-BSC and SSC-BSC) allowed a clear differentiation of PS and silica particles. To demonstrate the great potential of this methodology, two "real-life" samples containing different types of particles were tested as application examples. Commercial toothpaste and peeling gel products, as primary sources of microplastics into effluents, were analyzed via the optofluidic chip and compared to results from scanning electron microscopy. The scattering analysis of the complex samples enabled the detection and simultaneous differentiation of particles such as microplastics according to their differences in the refractive index via distinctive areas of high and low BSC signal values. Hence, the contribution of BSC light measurements in multiangle scattering of single particles realized in an optofluidic chip opens the way for the discrimination of single particles in a liquid medium in manifold fields of application ranging from environmental monitoring to cosmetics.
Keyphrases
  • high throughput
  • circulating tumor cells
  • human health
  • high resolution
  • drinking water
  • sensitive detection