Login / Signup

The ability of the kinesin-2 heterodimer KIF3AC to navigate microtubule networks is provided by the KIF3A motor domain.

Stephanie K DeebStephanie Guzik-LendrumJasper D JeffreySusan P Gilbert
Published in: The Journal of biological chemistry (2019)
Heterodimeric kinesin family member KIF3AC is a mammalian kinesin-2 that is highly expressed in the central nervous system and has been implicated in intracellular transport. KIF3AC is unusual in that the motility characteristics of KIF3C when expressed as a homodimer are exceeding slow, whereas homodimeric KIF3AA, as well as KIF3AC, have much faster ATPase kinetics and single molecule velocities. Heterodimeric KIF3AC and homodimeric KIF3AA and KIF3CC are processive, although the run length of KIF3AC exceeds that of KIF3AA and KIF3CC. KIF3C is of particular interest because it exhibits a signature 25-residue insert of glycine and serine residues in loop L11 of its motor domain, and this insert is not present in any other kinesin, suggesting that it confers specific properties to mammalian heterodimeric KIF3AC. To gain a better understanding of the mechanochemical potential of KIF3AC, we pursued a single molecule study to characterize the navigation ability of KIF3AC, KIF3AA, and KIF3CC when encountering microtubule intersections. The results show that all three motors exhibited a preference to remain on the same microtubule when approaching an intersection from the top microtubule, and the majority of track switches occurred from the bottom microtubule onto the top microtubule. Heterodimeric KIF3AC and homodimeric KIF3AA displayed a similar likelihood of switching tracks (36.1 and 32.3%, respectively). In contrast, KIF3CC detached at intersections (67.7%) rather than switch tracks. These results indicate that it is the properties of KIF3A that contribute largely to the ability of KIF3AC to switch microtubule tracks to navigate intersections.
Keyphrases
  • single molecule
  • magnetic resonance
  • escherichia coli
  • pseudomonas aeruginosa
  • computed tomography
  • magnetic resonance imaging
  • cystic fibrosis
  • climate change
  • high speed