Advancements in Flame-Retardant Systems for Rigid Polyurethane Foam.
Yao YuanWeiliang LinYi XiaoBin YuWei WangPublished in: Molecules (Basel, Switzerland) (2023)
The amplified employment of rigid polyurethane foam (RPUF) has accentuated the importance of its flame-retardant properties in stimulating demand. Thus, a compelling research report is essential to scrutinize the recent progression in the field of the flame retardancy and smoke toxicity reduction of RPUF. This comprehensive analysis delves into the conventional and innovative trends in flame-retardant (FR) systems, comprising reactive-type FRs, additive-type FRs, inorganic nanoparticles, and protective coatings for flame resistance, and summarizes their impacts on the thermal stability, mechanical properties, and smoke toxicity suppression of the resultant foams. Nevertheless, there are still several challenges that require attention, such as the migration of additives, the insufficient interfacial compatibility between flame-retardant polyols or flame retardants and the RPUF matrix, and the complexity of achieving both flame retardancy and mechanical properties simultaneously. Moreover, future research should focus on utilizing functionalized precursors and developing biodegradable RPUF to promote sustainability and to expand the applications of polyurethane foam.