Login / Signup

SMAD4 contributes to chondrocyte and osteocyte development.

Katayoon PakravanEhsan RazmaraBashdar Mahmud HussenFatemeh SattarikiaMajid SadeghizadehSadegh Babashah
Published in: Journal of cellular and molecular medicine (2021)
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Keyphrases
  • dna methylation
  • stem cells
  • epithelial mesenchymal transition
  • transforming growth factor
  • gene expression
  • systematic review
  • bone mineral density
  • risk assessment
  • public health
  • soft tissue
  • mesenchymal stem cells