Acute Influenza A virus outbreak in an enzootic infected sow herd: Impact on viral dynamics, genetic and antigenic variability and effect of maternally derived antibodies and vaccination.
Pia Ryt-HansenAnders Gorm PedersenInge LarsenJesper Schak KrogCharlotte Sonne KristensenLars Erik LarsenPublished in: PloS one (2019)
Influenza A virus (IAV) is a highly contagious pathogen in pigs. Swine IAV (swIAV) infection causes respiratory disease and is thereby a challenge for animal health, animal welfare and the production economy. In Europe, the most widespread strategy for controlling swIAV is implementation of sow vaccination programs, to secure delivery of protective maternally derived antibodies (MDAs) to the newborn piglets. In this study we report a unique case, where a persistently swIAV (A/sw/Denmark/P5U4/2016(H1N1)) infected herd experienced an acute outbreak with a new swIAV subtype (A/sw/Denmark/HB4280U1/2017(H1N2)) and subsequently decided to implement a mass sow vaccination program. Clinical registrations, nasal swabs and blood samples were collected from four different batches of pigs before and after vaccination. Virus isolation, sequencing of the virus strain and hemagglutinin inhibition (HI) tests were performed on samples collected before and during the outbreak and after implementation of mass sow vaccination. After implementation of the sow mass vaccination, the time of infection was delayed and the viral load significantly decreased. An increased number of pigs, however, tested positive at two consecutive sampling times indicating prolonged shedding. In addition, a significantly smaller proportion of the 10-12 weeks old pigs were seropositive by the end of the study, indicating an impaired induction of antibodies against swIAV in the presence of MDAs. Sequencing of the herd strains revealed major differences in the hemagglutinin gene of the strain isolated before- and during the acute outbreak despite that, the two strains belonged to the same HA lineage. The HI tests confirmed a limited degree of cross-reaction between the two strains. Furthermore, the sequencing results of the hemagglutinin gene obtained before and after implementation of mass sow vaccination revealed an increased substitution rate and an increase in positively selected sites in the globular head of the hemagglutinin after vaccination.
Keyphrases
- healthcare
- single cell
- primary care
- quality improvement
- escherichia coli
- liver failure
- public health
- respiratory failure
- gene expression
- risk assessment
- climate change
- intensive care unit
- aortic dissection
- optical coherence tomography
- acute respiratory distress syndrome
- gestational age
- mechanical ventilation
- dna methylation
- human health