Login / Signup

Continuous Learning AI in Radiology: Implementation Principles and Early Applications.

Oleg S PianykhGeorg LangsMarc DeweyDieter R EnzmannChristian J HeroldStefan O SchoenbergJames A Brink
Published in: Radiology (2020)
Artificial intelligence (AI) is becoming increasingly present in radiology and health care. This expansion is driven by the principal AI strengths: automation, accuracy, and objectivity. However, as radiology AI matures to become fully integrated into the daily radiology routine, it needs to go beyond replicating static models, toward discovering new knowledge from the data and environments around it. Continuous learning AI presents the next substantial step in this direction and brings a new set of opportunities and challenges. Herein, the authors discuss the main concepts and requirements for implementing continuous AI in radiology and illustrate them with examples from emerging applications.
Keyphrases
  • artificial intelligence
  • big data
  • machine learning
  • healthcare
  • deep learning
  • primary care
  • physical activity
  • electronic health record
  • clinical practice
  • social media