Login / Signup

Ground electronic state description of thiourea coordination in homoleptic Zn2+, Ni2+ and Co2+ complexes using sulfur K-edge X-ray absorption spectroscopy.

Matt S QueenFarideh JalilehvandRobert K Szilagyi
Published in: Journal of synchrotron radiation (2021)
Sulfur K-edge X-ray absorption spectroscopy (XAS) was employed to experimentally characterize the coordinative bond between the thiourea (TU) or thiocarbamide ligand and transition metal (TM) ions Zn2+, Co2+ and Ni2+ in distorted tetrahedral and octahedral homoleptic coordination environments. Comparisons of XAS spectra of the free TU ligand and [Zn(TU)4]2+, [Co(TU)4]2+ and [Ni(TU)6]2+ complexes clearly identify spectral features unique to TM2+-S(TU) bonding. Quantitative analysis of pre-edge intensities describes the covalency of Ni2+-S(TU) and Co2+-S(TU) bonding to be at most 21% and 9% as expressed by the S 3p contributions per TM 3d electron hole. Using relevant Ni2+ complexes with dithiocarbamate and thioether ligands, we evaluated the empirical S 1s → 3p transition dipole integrals developed for S-donor ligands and their dependence on heteroatom substitutions. With the aid of density functional theory-based ground electronic state calculations, we found evidence for the need of using a transition dipole that is dependent on the presence of conjugated heteroatom (N) substitution in these S-donor ligands.
Keyphrases